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1. Introduction

Considerations based on quantum gravity and black hole physics strongly indicate that,

at the smallest scale, space-time coordinates become noncommutative [1]. In general the

commutator among the coordinates is written as1

[ŷµ, ŷν ] = iθµν(ŷ, q̂) (1.1)

where the measure of noncommutativity θµν is taken to be a function of the phase space

variables. String theory also supports relations like (1.1) [2].

1Operators are denoted by hats to distinguish them from their classical analogues. Moreover, phase

space coordinates in noncommutative space-time are denoted by (ŷ, q̂) in contrast to the commutative

space description given by (x̂, p̂)
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There are some crucial issues related with the application of (1.1) to physical models.

In standard relativistic theory a non vanishing θµν can and does break Poincaré symme-

tries [3, 4]. Likewise for massless models, conformal symmetries are affected. However it

might be possible to introduce quantum deformations of these symmetries such that the

particular form of the commutator (1.1) remains covariant. This has been discussed in

great details, for a constant θµν , using either higher order differential operators [5 – 9] or

twist functions following from quantum group arguments [10, 11]. For Lie algebraic and

quadratic deformations in (1.1), such an analysis was done in [12].

Once the deformed symmetries have been defined the next issue concerns the for-

mulation of models with noncommutative space-time coordinates invariant under these

deformations. One can of course provide a construction of such models but, lacking a

definite prescription, these would be feasible in only the simplest cases, like a constant

θµν [13, 14].

In this paper we present an approach to the above problems where the noncommuta-

tivity in (1.1) is governed by the Snyder algebra [15], instead of constant θµν . An algebraic

approach, quite distinct from using either the higher order derivatives or twist functions, is

developed. The complete deformed conformal Poincaré transformations are obtained. The

generators yielding these deformed transformations are found. Although the generators

are deformed, they satisfy the usual algebra. An explicit algebraic mapping connecting

the deformed with the usual (undeformed) transformations is derived. We also construct

relativistic particle models that are invariant under the deformed symmetries.

In section 2 we introduce the Snyder space. The usual discrete (P,T) symmetries are

shown to be satisfied. Next, the Poincaré symmetries are considered. A deformed transla-

tion symmetry is necessary for preserving covariance of the Snyder algebra. Based on this

analysis, a dynamical model invariant under the deformation is formulated in section 3.

This model has a deformed symplectic structure. Using Dirac’s [16] constraint analysis

and the symplectic [17] approach, the deformed brackets are computed. Either method

shows that these brackets are just Snyder’s brackets - the classical version of the commu-

tator algebra. In section 4 we show that the deformed generators are also obtained from

Nöther’s theorem. Section 5 gives the algebraic map between the variables satisfying the

Snyder algebra and the standard commutative algebra. Both classical and quantum aspects

are dealt. Also, a momentum representation of the generators in Snyder space is given.

Section 6 extends our analysis to the conformal sector. An alternative form of an action,

which describes a massive relativistic particle, yielding the Snyder algebra is discussed in

section 7. We find that the mass of the particle gets identified with the inverse square root

of the noncommutativity parameter. Our final remarks are given in section 8.

2. The Snyder space and its symmetries

The Snyder [15] algebra for the position and the momentum operators is given by

[ŷµ, ŷν ] = iθ(ŷµq̂ν − ŷν q̂µ)

[ŷµ, q̂ν ] = i(δµ
ν + θq̂µq̂ν)

[q̂µ, q̂ν ] = 0

(2.1)
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where ŷµ are the noncommutative coordinates and θ is measure of the noncommutativity.

It was originally obtained by a dimensional descent from five dimensions and involves

the angular momentum in the algebra of the non commuting coordinates. Taking the

momentum operators commuting, as in the usual space, naturally leads to a deformed

algebra among ŷ − q̂, therefore ensuring the validity of the various Jacobi identities. It

leads to a discrete space time compatible with Lorentz symmetry. Apart from its intrinsic

interest this algebra has relevance in various contexts. For instance, a similar algebra is

also obtained from quantum gravity in 2 + 1 dimensions [18]. There also exits a mapping

between the Snyder space and κ-Minkowski space-time [19] which is frequently used in

analysing doubly special relativity.

We now study the different symmetries associated with the Snyder Algebra.

2.1 Discrete (P, T) symmetries

First the discrete symmetries are considered. Under the time reversal (T) operation, which

is anti-linear, in the Wigner sense,

ŷ0 → −ŷ0, ŷi → ŷi, q̂0 → q̂0, q̂j → −q̂j, i → −i (2.2)

the above algebra is invariant.

Similarly, under the parity (P) transformation, which is linear,

ŷ0 → ŷ0, ŷi → −ŷi, q̂0 → q̂0, q̂j → −q̂j, i → i (2.3)

the above algebra again remains invariant. Thus both P and T symmetries are indepen-

dently satisfied and no deformations are required. This may be compared with the algebra

for a constant θµν where these symmetries may be violated [20 – 22].

2.2 Lorentz symmetry

By its very construction the algebra (2.1) is compatible with standard Lorentz transforma-

tions,

δŷµ = ωµαŷα (2.4)

δq̂µ = ωµαq̂α. (2.5)

with ωµα = −ωαµ. This is checked in the following way. Consider the variation in the first

relation,

δ[ŷµ, ŷν ] = [δŷµ, ŷν ] + [ŷµ, δŷν ]

= iθωµα(ŷαq̂ν − ŷν q̂α) − iθωνα(ŷαq̂µ − ŷµq̂α). (2.6)

The same expression is obtained by considering the variation on the r.h.s of that relation,

iθδ(ŷµq̂ν − ŷν q̂µ) = iθωµα(ŷαq̂ν − ŷν q̂α) − iθωνα(ŷαq̂µ − ŷµq̂α). (2.7)
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An identical treatment follows for the other two relations. This is sufficient to ensure

consistency of the Lorentz transformations. Expectedly, the generator retains its primitive

(undeformed) structure,

Ĵµν = ŷµq̂ν − ŷν q̂µ (2.8)

so that,

δŷµ =
i

2
ωαβ

[

Ĵαβ , ŷµ

]

= ωµαŷα (2.9)

and similarly for q̂µ.

2.3 Translation symmetry

The explicit presence of the phase space variables in the algebra hints at a possible defor-

mation in the translation symmetry.2

To begin with we take the transformation law for translation identical with the com-

mutative space rule,

δŷµ = aµ (2.10)

δq̂µ = 0. (2.11)

One can easily check that this rule is not compatible with the first relation in the Snyder

algebra. So we must change the transformation rule to achieve consistency.

As a trial solution, general expressions of δŷµ and δq̂µ which are dimensionally consis-

tent are taken as

δŷµ = aµ + αθaµq̂2 + βθaρq̂
ρq̂µ (2.12)

δq̂µ = 0. (2.13)

Note that the transformation rule for q̂µ is kept undeformed since it is still commutative.

Consistency with the Snyder algebra fixes α = 0 and β = 1. So the deformed trans-

formation rule for the translation operator in Snyder space is given by,

δŷµ = aµ + θaρq̂
ρq̂µ. (2.14)

δq̂µ = 0. (2.15)

Although we have a deformed transformation rule for translation, the generator re-

mains the same as in the commutative space. To emphasize this point we note that

δŷµ = i
[

Ĝ, ŷµ
]

= iaρ[q̂ρ, ŷ
µ]

= aµ + θaρq̂ρq̂
µ. (2.16)

and likewise for q̂µ.

2This may be compared with the constant θµν case of (1.1) where translation symmetry is preserved but

Lorentz symmetry is broken.
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Thus the Poincaré generators in Snyder space and usual commutative space are form

invariant. However, whereas Lorentz transformation remains undeformed, translation get

deformed.

Finally, in spite of the involved algebra (2.1) these generators satisfy the usual Poincaré

algebra,

[q̂µ, q̂ν ] = 0
[

Ĵµν , q̂λ

]

= i(δµλq̂ν − δνλq̂µ)
[

Ĵµν , Ĵρσ

]

= −i(δνρĴµσ + δµσĴνρ − δµρĴνσ − δνσĴµρ). (2.17)

3. Dynamical models invariant under deformation and the Snyder algebra

Here a nontrivial application of the deformed symmetries is provided. Specifically, we

discuss a method by which dynamical models can be constructed to yield, from their

symplectic structure, the Snyder algebra. Several authors [23 – 26] have suggested various

models leading to this algebra but they lack a clear cut guiding principle. This is further

exemplified by the fact that the results are obtained in a specific gauge. The Snyder algebra

therefore occurs as an artefact of the gauge rather than something fundamental.

We adopt the following strategy. A dynamical model is constructed that is invariant

under the deformed (translation) symmetry. The ensuing model has an involved symplectic

structure which is elucidated by both the Dirac and symplectic approaches. A calculation of

the Dirac (or symplectic) brackets yields Snyder algebra. No gauge (or reparametrisation)

fixing is necessary. It is also reassuring to note that, following a Nöther approach, we show

that the Poincaré generators remain form invariant, exactly as discussed in the previous

section.

Consider the following first order form of the action for a relativistic free particle of

mass m,

S =

∫

dτ [−q̇µyµ − e(q2 − m2)] (3.1)

where e is a Lagrange multiplier enforcing the Einstein condition q2 − m2 = 0.

Since the Lorentz transformation is undeformed, obviously (3.1) remains invariant.

Under translation however,

δS =

∫

dτ [−q̇µ(aµ + θaρq
ρqµ)] (3.2)

=

∫

dτ

[

−
d

dτ
(qµaµ) − θaρq

ρqµq̇µ

]

(3.3)

obtained on exploiting (2.14), (2.15). The additional symmetry breaking term can be

written as,

θaρq
ρqµq̇µ = θ(δyρ − θaσqσqρ)q

ρqµq̇µ (3.4)

= θδ[yρq
ρqµq̇µ] − θ2δ[yσqσq2q̇µqµ] + θ3δ[yσqσ(q2)2q̇µqµ] + · · · (3.5)

= θδ

[

1

1 + θq2
(y · q)q̇µqµ

]

(3.6)
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where recursive use of (2.14) and (2.15) has been done.

It is clear that by introducing the term inside the parentheses in the action, invariance

under deformed translations would be preserved.3 Thus the relevant action is given by,

S =

∫

dτ

[

−q̇µyµ +
θ

1 + θq2
(y.q)q̇µqµ − e(q2 − m2)

]

. (3.7)

This is invariant under Lorentz transformations,

δS = 0 (3.8)

and quasi-invariant under deformed translations,

δS =

∫

dτ

[

−
d

dτ
(aµqµ)

]

. (3.9)

3.1 Dirac’s constraint analysis

We interpret y and q of the first order action (3.7) as the configuration variables in an

extended space. The canonical momentum conjugate to y, q and e are,

πy
µ =

∂L

∂ẏµ
= 0

πq
µ =

∂L

∂q̇µ
= −yµ +

θ

1 + θq2
(y · q)qµ

πe =
∂L

∂ė
= 0.

Since none of the momenta involve velocities these have to be interpreted, following Dirac

[16], as primary constraints. These are given by

Φ = πe ≈ 0 (3.10)

Φ1,µ = πy
µ ≈ 0 (3.11)

Φ2,µ = πq
µ + yµ −

θ

1 + θq2
(y.q)qµ ≈ 0 . (3.12)

The Poisson algebra of the constraints is given by

{Φ,Φ} = {Φ,Φ1,µ} = {Φ,Φ2,µ} = 0 (3.13)

{Φ1,µ,Φ1,ν} = 0 (3.14)

{Φ1,µ,Φ2,ν} = −ηµν +
θ

1 + θq2
qµqν (3.15)

{Φ2,µ,Φ2,ν} =
θ

1 + θq2
(qνyµ − qµyν). (3.16)

Because the algebra of the constraints Φ1,µ and Φ2,µ does not close, they form a second

class set. This set can be eliminated as shown later, by the use of Dirac brackets.

3Actually a total time derivative d
dτ

(−qµaµ) remains but this is allowed. It is in fact related to the

generator, as shown later.
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Since the action given in (3.7) is first order, the canonical Hamiltonian of the system

can be written easily

HC = e(q2 − m2). (3.17)

Following Dirac the total Hamiltonian is given by

HT = e(q2 − m2) + λΦ + λ1,µΦ1,µ + λ2,µΦ2,µ. (3.18)

Time consistency of the constraint (3.10) leads to the following secondary constraint

Ψ = {HT , πe} = q2 − m2 ≈ 0. (3.19)

The second class constraint sector Φ1,Φ2 is next eliminated by using Dirac brackets.

The first step is to compute the constraint matrix,

Λµν =

(

{Φ1,µ,Φ1,ν} {Φ1,µ,Φ2,ν}

{Φ2,µ,Φ1,ν} {Φ2,µ,Φ2,ν}

)

(3.20)

=

(

0 −ηµν + θ
1+θq2 qµqν

ηµν − θ
1+θq2 qµqν

θ
1+θq2 (qνyµ − qµyν)

)

. (3.21)

We write the inverse of Λµν as Λµν such that Λµν
ij Λjk,νρ = δ

µ
ik,ρ (i, j, k = 1, 2). It is given

by

Λµν =

(

θ(yµqν − yνqµ) ηµν + θqµqν

−ηµν − θqµqν 0

)

. (3.22)

At this point one can calculate the various Dirac brackets using the definition [16].

{f, g}DB = {f, g} − {f,Φi,µ}Λ
µν
ij {Φj,ν , g}. (3.23)

For our model the Dirac brackets among the configuration space variables are

{yµ, yν}DB = θ (yµqν − yνqµ)

{qµ, qν}DB = 0

{yµ, qν}DB = δµ
ν + θqµqν. (3.24)

This algebra is basically the classical version of the Snyder algebra given in (2.1). In

order to elevate this algebra at the operator level we note that there is no ordering problem.

Since q s commutes among themselves there is no problem in the algebra between yµ and

qν . Furthermore the difference between yµqν and qνyµ is symmetrical in µ, ν. Since the

bracket between yµ and yν is antisymmetric in µ, ν there is no ordering problem in this case

also. Consequently the Dirac brackets (3.24) get lifted to the commutators (2.1) without

ordering ambiguities. A generalized version of Snyder algebra, where both y and q are

noncommuting, has been discussed in [27].

Since the constraint Φ is the canonical conjugate momentum of the Lagrange multiplier

e, it is not physically important. On the other hand the secondary constraint Ψ has

vanishing Dirac brackets with all constraints,

{Ψ,Ψ}DB = {Ψ,Φ}DB = 0 (3.25)

{Ψ,Φ1,µ}DB = {Ψ,Φ2,µ}DB = 0. (3.26)
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Therefore the constraint Ψ is first class and hence the generator of gauge (reparametrisa-

tion) transformation.

It is now useful to note that qµ and Jµν are gauge invariant variables since,

{qµ, (q2 − m2)}DB = 0 (3.27)

{Jµν , (q2 − m2)}DB = 0. (3.28)

For this reason the Dirac algebra and Poisson algebra involving qµ and Jµν are identical.

Since their Poisson algebra leads to the usual Poincaré algebra it is clear that their Dirac

algebra also yields the same Poincaré algebra. It gives a dynamical explanation of the

fact that Jµν and qν satisfy the undeformed Poincaré algebra inspite of the deformed alge-

bra (2.1) of its composites. The argument is equally valid at the quantum level since (3.27)

and (3.28) may be elevated to commutators by

[q̂µ, (q̂2 − m2)] = 0 (3.29)

[Ĵµν , (q̂2 − m2)] = 0 (3.30)

which may be easily verified by using the basic algebra.

3.2 Symplectic analysis

As is well known there is an alternative (and occasionally quicker than Dirac’s) method

of getting the basic brackets. This is the symplectic approach [17] and is geared for first

order systems. In this method everything is obtained from the equations of motion and

the obtention or classification of constraints is redundant.

The equations of motion obtained from (3.7) are

q̇µ −
θ

1 + θq2
(q̇.q)qµ = 0 (3.31)

ẏµ −
θ

1 + θq2
{(ẏ.q)qµ − (q̇.y)qµ + (q̇.q)yµ} − 2qµ = 0. (3.32)

These equations of motion can be written in the form

Λij,µν ξ̇j,ν =
∂HC

∂ξi,µ
(3.33)

where

ξ
µ
1 = yµ, (3.34)

ξ
µ
2 = qµ

and Λij,µν is given in (3.21). The canonical Hamiltonian HC is defined in (3.17).

The symplectic brackets are given by

{f, g}SB = Λαβ
ij ∂i,αf∂j,βg (3.35)
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where

∂i,α =
∂

∂ξα
i

(3.36)

and Λαβ
ij is given in (3.22). So the relevant symplectic brackets are

{yµ, yν}SB = θ (yµqν − yνqµ)

{qµ, qν}SB = 0

{yµ, qν}SB = δ
µ
ν + θqµqν .

(3.37)

The symplectic brackets are identical with the Dirac brackets and generate the classical

version of the Snyder algebra given in (2.1).

4. Nöther’s theorem and generators

It is possible to reproduce the Poincaré generators from a Nöther analysis of (3.7). This

provides a link between the algebraic way of obtaining the generators in section 2 and the

dynamical method.

In general, the invariance of an action S under an infinitesimal symmetry transforma-

tion,

δQi = {Qi, G} (4.1)

is given by

δS =

∫

dτ
d

dτ
(δQµPµ − G) (4.2)

where G is the generator of the transformation and Pµ is the canonical momenta conjugate

to Qµ. If the quantity inside the parentheses is denoted by B(Q,P ), then the generator is

defined as,

G = δQµPµ − B. (4.3)

For the model (3.7) both y, q are interpreted as configuration space variables so that,

G = δqµπq
µ + δyµπy

µ − B. (4.4)

This is further simplified on using the constraints (3.11), (3.12) to yield,

G = δqµ

(

θ

1 + θq2
(y · q)qµ − yµ

)

− B. (4.5)

Translations. For translations (2.15) and (3.9) reveal that,

δqµ = 0, B = −aσqσ (4.6)

so that,

G = aσqσ (4.7)

yielding the cherished expression.
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Rotations. For rotations δqµ is given by (2.5) while B = 0 since the Lagrangian itself is

manifestly invariant (δL = 0). Hence we get,

G = ωµαqα

(

θ

1 + θq2
(y · q)qµ − yµ

)

= −ωµαqαyµ

=
ωµα

2
Jαµ (4.8)

which is the desired form of the rotation generator.

5. Mapping between deformed and usual symmetries

In this section we discuss algebraic transformations mapping the deformed symmetries

with the primitive (undeformed) ones. This is obtained by comparing the actions (3.1)

and (3.7). The action (3.1) satisfies the undeformed symmetries while (3.7) satisfies their

deformed versions. Now (3.1) is rewritten in terms of canonical variables (x, p) so that,

S =

∫

dτ [−ṗµxµ − e(p2 − m2)] (5.1)

with,

{xµ, pν} = δµν , {xµ, xν} = {pµ, pν} = 0 (5.2)

Also, under translations and Lorentz transformations,

δxµ = aµ, δpµ = 0 (5.3)

δxµ = ωµαxα, δpµ = ωµαpα. (5.4)

Then the actions (5.1) and (3.7) are mapped by the transformations,

xµ = yµ −
θ

1 + θq2
(y · q)qµ (5.5)

pµ = qµ. (5.6)

The maps preserve the stability of the infinitesimal Poincaré transformations. For instance,

using (2.14) and (2.15) we obtain for translations,

δ

(

yµ −
θ

1 + θq2
(y · q)qµ

)

= aµ = δxµ (5.7)

thereby verifying our assertion. Rotations are trivially preserved.

The inverse map is given by,

yµ = xµ + θ(x · p)pµ (5.8)

qµ = pµ. (5.9)

– 10 –
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The classical Snyder algebra follows from the above relations by using the canonical alge-

bra (5.2),

{yµ, qν} = {xµ + θ(x · p)pµ, pν} (5.10)

= δµ
ν + θqµqν (5.11)

and likewise for the other brackets.

It is feasible to construct operator analogue of the maps (5.5), (5.6) by giving an

ordering prescription. Using the Weyl (symmetric) ordering, we get,

x̂µ = ŷµ −
θ

8

[

q̂µq̂ρ

1 + θq̂2
ŷρ + q̂µq̂ρŷ

ρ 1

1 + θq̂2

+
q̂µ

1 + θq̂2
ŷρq̂ρ +

q̂ρ

1 + θq̂2
ŷρq̂µ

+ q̂µŷρ q̂ρ

1 + θq̂2
+ q̂ρŷ

ρ q̂µ

1 + θq̂2
(5.12)

+
1

1 + θq̂2
ŷρq̂µq̂ρ + ŷρ q̂µq̂ρ

1 + θq̂2

]

p̂µ = q̂µ.

The inverse transformation is found to be,

ŷµ = x̂µ +
θ

4
[x̂ρp̂ρp̂

µ + p̂µp̂ρx̂
ρ + p̂µx̂ρp̂ρ + p̂ρx̂

ρp̂µ]

q̂µ = p̂µ (5.13)

which is just the Weyl ordered form of (5.8), (5.9).

A slightly lengthy computation reveals that the quantum Snyder algebra (2.1) as a

commutator algebra follows from (5.13) by using the standard canonical commutators

involving x and p.

It is also possible to prove, once again after some algebra, the operator identity obtained

from (5.13),

x̂µp̂ν − x̂ν p̂µ = ŷµq̂ν − ŷν q̂µ = Ĵµν (5.14)

which illustrates the form invariance of the angular momentum generator. It also provides

another explanation of the fact that the Poincaré generators in the Snyder basis satisfy the

usual algebra.

Representation. It is possible to give a particular representation for the operators ŷµ, q̂ν .

Since the momenta (q̂µ) commute, momentum representation is favored. One may verify

that the differential representation of the operators leading to the Snyder algebra (2.1) is

given by,

q̂µ = qµ (5.15)

ŷµ = i

(

∂

∂qµ
+ θqµqν

∂

∂qν

)

. (5.16)
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This representation was also obtained in [27]. Moreover the space part of these relations

had occurred earlier in a different context [28]. As an application of this representation,

the identity (5.14) is reproduced. The angular momentum operator is represented as,

Ĵµν = ŷµq̂ν − ŷν q̂µ (5.17)

= q̂ν ŷµ − q̂µŷν (5.18)

= i

(

qν
∂

∂qµ
− qµ

∂

∂qν

)

(5.19)

which just corresponds to the usual (momentum space) representation of angular momen-

tum in the commutative space.

6. Deformed conformal symmetry

After discussing the translational and the Lorentz symmetry we next consider deformations

in the dilatation and the special conformal transformation. First an algebraic analysis is

considered which is followed by a dynamical treatment related to the action (3.7).

6.1 Dilatation symmetry

Let us begin by treating the usual transformations under dilatation,

δŷµ = εŷµ (6.1)

δq̂µ = −εq̂µ. (6.2)

It is clear that covariance of only the last relation in (2.1) is preserved. Thus although the

transformation for q̂µ is unmodified, that for ŷµ must be deformed. We take as an ansatz

δŷµ = εŷµ + εQ̂µ(θ). (6.3)

Then demanding covariance of the second relation in (2.1) one obtains,

[δŷµ, q̂ν ] + [ŷµ, δq̂ν ] = iδ(δµν + θq̂µq̂ν) (6.4)

= −2iθεq̂µq̂ν (6.5)

which yields

[Q̂µ, q̂ν ] = −2iθq̂µq̂ν . (6.6)

Up to an ordering ambiguity a solution for Q̂µ is given by

Q̂µ = −
2θ(ŷ · q̂)q̂µ

1 + θq̂2
. (6.7)

The ambiguity is fixed by requiring covariance of the ŷµ − ŷν bracket in (2.1) leading to

the following transformation law,

δŷµ = ε

[

ŷµ − ŷρ
θq̂ρq̂µ

1 + θq̂2
−

θq̂ρq̂µ

1 + θq̂2
ŷρ

]

. (6.8)
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The dilatation generator yielding the deformed transformations is given by,

D̂ =
1

2

[

ŷρ
q̂ρ

1 + θq̂2
+

q̂ρ

1 + θq̂2
ŷρ

]

(6.9)

so that

δq̂µ = −iε[q̂µ, D̂] = −εq̂µ, (6.10)

δŷµ = −iε[ŷµ, D̂] = ε

[

ŷµ − ŷρ
θq̂ρq̂µ

1 + θq̂2
−

θq̂ρq̂µ

1 + θq̂2
ŷρ

]

. (6.11)

In the limit θ → 0, it reduces to the standard expression. The same result also follows on

using the undeformed generators,

D̂ =
1

2
[x̂ρp̂ρ + p̂ρx̂

ρ] (6.12)

and using the transformations (5.12), (5.13) which leads to the operator identity,

x̂ρp̂ρ + p̂ρx̂
ρ = ŷρ

q̂ρ

1 + θq̂2
+

q̂ρ

1 + θq̂2
ŷρ. (6.13)

Interpreted in this manner it is obvious that although D in (6.9) is deformed, the

corresponding algebra of generators remains the same
[

D̂, D̂
]

= 0 (6.14)
[

D̂, q̂µ

]

= iq̂µ (6.15)
[

D̂, Ĵµν

]

= 0. (6.16)

6.2 Dynamical treatment

We next consider the dynamical model (3.7) and study its classical invariance under the

deformed dilatation transformation. We therefore take its massless version,

S =

∫

dτ [−q̇µyµ +
θ

1 + θq2
(y.q)q̇µqµ − eq2]. (6.17)

Since the demonstration of this invariance has certain distinctive features we provide some

computational details.

The variations of the individual pieces turn out to be

−eδ(q2) = 2εeq2,

δ(−q̇µyµ) = ε
2θ

1 + θq2
(y · q)(q̇ · q),

δ

(

θ

1 + θq2
(y · q)(q̇ · q)

)

= −ε
2θ

1 + θq2
(y · q)(q̇ · q).

Therefore the total variation in the Lagrangian is given by

δL = 2εeq2. (6.18)
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This variation cannot be expressed as a total time derivative. However if we pass to the

constraint shell (3.19) which in this case is given by q2 = 0, invariance is achieved, δL = 0.

It is relevant to note that had the mass term been included in the original Lagrangian,

its variation would still be given by (6.18). In that case q2 = m2 6= 0 and there is no

invariance. This is compatible with the observation that dilatation symmetry is broken for

massive theories.

We can reconstruct the dilatation generator by using Nöther’s theorem. Using (4.5),

the variation (6.2) and B = 0 (since δL = 0), we obtain,

G = −εqµ

(

θ(y · q)qµ

1 + θq2
− yµ

)

=
ε(y · q)

1 + θq2
. (6.19)

It is possible to construct the operator analogue of the above generator by following

the Weyl ordered prescription,

D =
ε

4

[

ŷρ
q̂ρ

1 + θq̂2
+

q̂ρ

1 + θq̂2
ŷρ + q̂ρŷ

ρ 1

1 + θq̂2
+

1

1 + θq̂2
ŷρq̂ρ

]

. (6.20)

The last two terms combine to give first two terms so that the final expression exactly

agrees with (6.9).

Further, to see whether the dilatation generator is gauge invariant or not, we calculate

{D, q2}DB and the result is

{D, q2}DB = 2q2. (6.21)

Here also we see that right hand side of above equation is proportional to q2. Therefore on

the mass-shell constraint the Dirac bracket of D with q2 vanishes and hence we conclude

that D is a gauge invariant object. Hence, in spite of the deformation, the algebra of

generators (6.14), (6.15) and (6.16) remains the same. This was also inferred earlier from

different considerations. Note that the algebra (6.21) is also valid at the commutator level.

From the basic algebra (2.1) it can be shown that

[D̂, q̂2] = 2iq̂2. (6.22)

6.3 Special conformal symmetry

Here we discuss the deformed special conformal transformations. Since the computations

are quite involved, we adopt a classical treatment that makes the results transparent. Also,

instead of proceeding from the basic requirement of preserving the covariance of the Snyder

algebra, we exploit the transformations (5.5), (5.6) to directly construct the deformed

generator from the usual expression. After getting the deformed generator, covariance of

the Snyder algebra is shown.

In the ordinary commutative space the generator for the special conformal transfor-

mation is given by,

Kµ = 2xµ(xρpρ) − x2pµ. (6.23)
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Using (5.5), (5.6) the deformed generator is computed from the above equation by a simple

substitution,

Kµ = −y2qµ + 2yµ(y · q)
1

1 + θq2
.

+θ2(y · q)2
1

(1 + θq2)2
q2qµ. (6.24)

The transformation rules for the deformed conformal transformation are given by

δyµ = εν{yµ,Kν}

δqµ = εν{qµ,Kν}
(6.25)

where εµ is a constant infinitesimal parameter corresponding to the special conformal trans-

formation. Using the classical Snyder algebra (3.24) we obtain

δyµ =

{

θy2qµqν − y2δµν − 6θ(yνqµ)(y · q)
1

1 + θq2

+ 2yµyν + θ2(y · q)2
1

(1 + θq2)2
(q2δµν − θqµqνq

2 + 2qµqν)

}

εν (6.26)

δqµ =

{

2yµqν − 2yνqµ − 2(y · q)
1

1 + θq2
δµν

}

εν . (6.27)

These are the deformed conformal transformations. Expectedly in the limit θ → 0 these

reduce to the familiar structures in commutative space. From these transformations it is

found that

δ{yµ, yν}DB = {δyµ, yν} + {yµ, δyν}

= θδ (yµqν − yνqµ)

δ{qµ, qν}DB = 0

δ{yµ, qν}DB = δ (δµ
ν + θqµqν) .

(6.28)

This is sufficient to prove that the compatibility of the deformed transformation with the

Snyder brackets. Finally, we verify the invariance of the action (6.17) under the deformed

transformations. As shown earlier for the other generators, this also allows an alternative

derivation of the conformal generator using Nöther’s theorem.

We first calculate the variation of the individual pieces in the action (6.17)

−δ(q̇µyµ) =

{

d

dτ
(y2qµ − 2Dyµ) + 2ẏµ

y · q

1 + θq2
− 2ẏµ

− θ(q̇ · q)Kµ +
d

dτ
(−2θyµq2D + θ2D2q2qµ)

+

[

θ2D2q̇µ −
d

dτ
(−2θyµD + θ2D2qµ)

]

q2

}

εµ,

θδ

(

y · q

1 + θq2

)

(q̇ · q) = −{θKµ(q̇ · q)}εµ,

θ

(

y · q

1 + θq2

)

δ(q̇ · q) =

{

d

dτ
(2D2θ2q2qµ − 2Dyµθq2) − 2q2(θ2qµ − θyµ)

dD

dτ

}

εµ,

−eδ(q2) = {4eq2(θDqµ − yµ)}εµ. (6.29)
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Some terms are expressible as a total time derivative which are retained since these will be

useful in obtaining the generator. Terms not expressible in this way drop out for q2 = 0.

Combining all terms, we obtain,

δL =
d

dτ
[Kµεµ] (6.30)

where Kµ is given in (6.24).

As in the case of dilatation it is necessary to pass to the mass shell constraint q2 = 0 to

get the invariance of the action. Of course for massive theories q2 = m2 6= 0 this invariance

is broken.

Nöther’s theorem and generator. The generator of deformed symmetry is alterna-

tively computed from Nöther’s theorem using the definition (4.5). The variation δqµ is

obtained from (6.27) while B is abstracted from (6.30). We find,

G = 2εν

(

yµqν − yνqµ −
y · q

1 + θq2
δµν

)(

θ
y · q

1 + θq2
qµ − yµ

)

− ενKν

= 2ενKν − ενKν

= ενKν (6.31)

thereby reproducing the desired definition of the deformed generator given in (6.24)

Further, we have verified that

{Kµ, q2}DB = (4θ2qµ(y · q)q2 − 4θ(y · q)qµ + 2yµ)q2. (6.32)

Hence, on the mass-shell constraint q2 = 0, Kµ is a gauge invariant object.

The deformed generators obviously satisfy the complete (usual) conformal algebra.

7. Snyder algebra from alternative action

The deformed symmetries preserving compatibility with the Snyder algebra were used to

yield an action that possessed these symmetries. The symplectic structure of this first order

action naturally yielded the Snyder algebra. In this section we propose an alternative form

of the action which leads to the same algebra. This approach is more in tune with the con-

ventional spirit but with important differences, where different actions [23 – 26] have been

suggested to yield the Snyder algebra. Usually the original action has a reparametrisation

invariance which is eliminated by an appropriate choice of gauge. The Dirac brackets com-

puted in the gauge fixed (reduced) space then correspond to (2.1). In our approach, on

the contrary, no gauge fixing is required and the cherished algebra follows naturally. The

second point is that in usual approaches, the noncommutativity parameter θ is introduced

by hand. In our analysis this parameter gets identified as θ ∼ 1

m2 where m is the mass of

a relativistic particle.

Our proposed action is given by,

S =

∫

L(y, ẏ)dτ

= m

∫

dτ
√

gµν ẏµẏν (7.1)
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where

ẏµ =
dyµ

dτ
and (7.2)

gµν = ηµν −
yµyν

y2
(7.3)

y2 = yσyσ = ησλyσyλ. (7.4)

Since the space-time coordinate yµ(τ) transforms as a scalar under reparametrisation

τ → τ ′ = τ ′(τ) (7.5)

yµ(τ) → y′µ(τ ′) = yµ(τ) (7.6)

it is easy to verify that the system is reparametrisation invariant.

Note that gµν acts like a projection operator in the sense that

gµρg
µ
ν = gρν (gµ

ν = ηµρgρν) (7.7)

yµgµν = 0. (7.8)

The canonical momentum is defined as,

qµ =
∂L

∂ẏµ

= m
gµν ẏν

√

gρσ ẏρẏσ
. (7.9)

Using (7.7) and (7.8) one immediately gets the following primary constraints,

φ1 = q2 − m2 ≈ 0 (7.10)

φ2 = qµyµ ≈ 0. (7.11)

The first constraint is the well known Einstein’s relation for a relativistic particle of mass

m. The second constraint is basically a transversality condition. It is interesting to note

that this constraint does not involve the proper time so that reparametrisation invariance

is kept intact. However the constraints do not close ({φ1, φ2} = −2q2 = −2m2) so that

the symplectic structure is deformed. The deformed brackets are now computed by the

standard Dirac procedure.

The constraint matrix is given by,

Λ =

(

{φ1, φ1} {φ1, φ2}

{φ2, φ1} {φ2, φ2}

)

=

(

0 −2m2

2m2 0

)

. (7.12)

Its inverse is

Λ−1 =

(

0 1

2m2

− 1

2m2 0

)

. (7.13)
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Following (3.23) the Dirac brackets are computed. They are given by,

{yµ, yν}DB = −
1

m2
(yµqν − yνqµ)

{yµ, qν}DB = δµν −
1

m2
qµqν

{qµ, qν}DB = 0. (7.14)

This algebra reproduces the Snyder algebra under the identification θ = − 1

m2 . Thus the

relativistic action (7.1) of mass m =
√

−1

θ
basically describes the Snyder particle.

To show the internal consistency one can calculate the action from the constraints.

The canonical Hamiltonian of the system,

HC = qµẏµ − L = 0 (7.15)

vanishes, revealing its reparametrisation invariance. Hence the total Hamiltonian is just a

linear combination of the primary constraints (7.10) and (7.11),

HT = λ1(q
2 − m2) + λ2q

µyµ (7.16)

where λ1, λ2 are the Lagrange multipliers. The action is defined as,

S =

∫

dτ (qµẏµ − HT ) (7.17)

=

∫

dτ
(

qµẏµ − λ1(q
2 − m2) − λ2q

µyµ

)

. (7.18)

One can eliminate qµ from the above action by using its equation of motion,

qµ =
ẏµ − λ2yµ

2λ1

. (7.19)

The equations of motion for λ1 and λ2 are,

λ1 =
1

2m

[

ẏ2 −
(ẏµyµ)2

y2

]

, (7.20)

λ2 =
ẏµyµ

y2
. (7.21)

Substituting eq. (7.20) and eq. (7.21) in eq. (7.19) and after doing some algebra we have

qµ = m

(

ẏ2 −
(ẏµyµ)2

y2

)− 1

2

(

ẏµ −
ẏνyν

y2
yµ

)

. (7.22)

This is consistent with the result (7.9). After substituting eq. (7.20), eq. (7.21) and

eq. (7.22) in eq. (7.18) we have

S = m

∫

dτ

√

[

ẏ2 −
(ẏµyµ)2

y2

]

. (7.23)

This action is precisely (7.1). This action is also invariant under the deformed Poincaré
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transformations. For discussing the conformal transformations, the massless case has to be

considered. In the form (7.23) this is obviously not feasible. But this action is equivalently

expressed in the form,

S =

∫

dτ

[

1

4λ1

(ẏµ − λ2yµ)2 + λ1m
2

]

(7.24)

where λ1, λ2 are given in (7.20), (7.21). Here the m = 0 limit is easily implemented.

Following the Dirac analysis a pair of primary constraints is obtained. From the definition

of the canonical momenta,

πλ1
≈ 0 (7.25)

πλ2
≈ 0 (7.26)

πµ −
1

2λ1

(ẏµ − λ2yµ) ≈ 0. (7.27)

The canonical Hamiltonian HC is given by

HC = πµẏµ − L (7.28)

= λ1q
2 + λ2y

µqµ. (7.29)

Time consistency of the primary constraints yields the secondary constraints,

{πλ1
,HC} = 0 ⇒ q2 ≈ 0 (7.30)

{πλ2
,HC} = 0 ⇒ yµqµ ≈ 0. (7.31)

The interesting point is that these constraints (which are basically the m = 0 value

of (7.10), (7.11)) are now first class. So the Poisson brackets remain valid. The Snyder

algebra, which is obtained from the Dirac brackets, obviously does not arise here. Hence,

for this action, invariance under deformations is not a meaningful issue.

8. Conclusions

Deformed conformal-Poincaré symmetries compatible with Snyder algebra were obtained

in an algebraic approach. This approach is quite general to include other types of non-

commutative spaces. As an application we constructed dynamical models invariant under

the deformed symmetries. From the dynamical content, a (classical) mapping among the

basic variables in the Snyder and usual ( commutative) descriptions was abstracted. A

Weyl ordering of the classical map provided its quantum version. This was explicitly ver-

ified by comparing the relevant commutators. From this map a differential (momentum)

representation of the phase space operators in Snyder space was derived.

An alternative action leading to the Snyder algebra was also given. The new point here

was that the noncommutativity parameter θ get identified with the mass m of a relativistic

particle by m =
√

−1
θ
. The dispersion relation p2 = m2 remains valid but there is an inbuilt

constraint enforcing a transversality condition that deforms the basic (Poisson) algebra to

the Snyder form.
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Perhaps a point worth mentioning is that, in deriving the Snyder algebra from dynam-

ical models, no gauge (or reparametrisation) fixing is required. Since the basic variable (y)

is not reparametrisation invariant, obtaining the Snyder algebra in a specific gauge implies

that it could be an artifact of the gauge. In this sense our derivation is conceptually clear

than other approaches [23 – 26] where gauge fixing is mandatory.

As a future prospect we could construct field theory models with Snyder noncommu-

tativity. An appropriate star product would have to be defined followed by demanding

invariance under the deformed symmetries discussed here.
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